

Quantum interference between doubly and singly resonant top quark production

Christian Herwig
University of Pennsylvania

APS DPF 2017

$$|\mathcal{A}_{WWbb}|^2 \sim |\mathcal{A}^{(Wtb)}|^2 + |\mathcal{A}^{(t\bar{t})}|^2 + 2\mathcal{R}\{\mathcal{A}^{(Wtb)}\mathcal{A}^{(t\bar{t})}\}$$

The interference is largest when tWb "looks like" ttbar

ATLAS separately generates ttbar and Wtb at NLO+PS with Powheg+Pythia

$$|\mathcal{A}_{WWbb}|^2 \sim |\mathcal{A}^{(Wtb)}|^2 + |\mathcal{A}^{(t\bar{t})}|^2 + 2\mathcal{R}\{\mathcal{A}^{(Wtb)}\mathcal{A}^{(t\bar{t})}\}$$

The interference is largest when tWb "looks like" ttbar

ATLAS separately generates ttbar and Wtb at NLO+PS with Powheg+Pythia

Interference effects are estimated by comparing two ad-hoc prescriptions:

Diagram Removal (DR) and Diagram Subtraction (DS)

Their difference is assigned as a systematic uncertainty

$$|\mathcal{A}_{WWbb}|^2 \sim |\mathcal{A}^{(Wtb)}|^2 + |\mathcal{A}^{(t\bar{t})}|^2 + 2\mathcal{R}\{\mathcal{A}^{(Wtb)}\mathcal{A}^{(t\bar{t})}\}$$

Define Diagram Removal (DR)

single top to take only the $\mathcal{A}^{(Wtb)}$ piece

Add'l details: Frixione et al. arXiv:0805.3067

$$|\mathcal{A}_{WWbb}|^2 \sim |\mathcal{A}^{(Wtb)}|^2 + |\mathcal{A}^{(t\bar{t})}|^2 + 2\mathcal{R}\{\mathcal{A}^{(Wtb)}\mathcal{A}^{(t\bar{t})}\}$$

Add'l details: Frixione et al. arXiv:0805.3067

Define Diagram Removal (DR) single top to take only the $\mathcal{A}^{(Wtb)}$ piece

Define Diagram Subtraction (DS) single top as the entire expression, minus a gauge-invariant term that exactly cancels $\mathcal{A}^{(t\bar{t})}$ when $M_{bW}^2 \to m_t^2$

DS/DR disagreement large in extreme (search) phase space

Herwig (Pennsylvania)

DS/DR disagreement large in extreme (search) phase space

Run 2 LHC has provided us with millions of Wt events

Can we use this data to improve our understanding of tt-Wt interference?

Herwig (Pennsylvania)

Let $m_{ij} = m(b_i, \ell_j)$, and define

 \min - $\max m(b, \ell)$

 $\equiv \min \{ \max(m_{11}, m_{22}), \max(m_{12}, m_{21}) \}$

Let $m_{ij} = m(b_i, \ell_j)$, and define

min-max $m(b, \ell)$

 $\equiv \min \{ \max(m_{11}, m_{22}), \max(m_{12}, m_{21}) \}$

wrong pairing: mbl usually large correct pairing: mbl bounded by mtop

Important Properties:

min-max m_{bl} < m_{top} for ttbar events not necessarily for Wt events!

Fiducial region:

exactly 2 leptons, exactly 2 b-tagged jets

 $m_{\parallel} > 10 \text{ GeV and } |m_{\parallel}-m_{Z}| > 5 \text{ GeV}$

Fiducial region:

exactly 2 leptons, exactly 2 b-tagged jets

 $m_{\parallel} > 10 \text{ GeV and } |m_{\parallel}-m_{Z}| > 5 \text{ GeV}$

Single lepton triggers

lepton p_T > 28 GeV

b-jet $p_T > 20 \text{ GeV}$

tag at 60% efficiency WP, veto at 85%

ttbar and Wt are treated together as the signal process

dominant backgrounds estimated from data using dedicated control regions (CRs)

Estimating tt with additional heavy flavor

Problem:

if the identified b-jets aren't from top decays ttbar can pass the kinematic endpoint!

Solution:

normalize tt+b in a dedicated 3 b-jet CR

mbl spectrum is unfolded to particle-level

(with ttbar and Wt treated together)

Results (blinded)

Total uncertainty in tail is dominated by data statistics

Sensitive to DR/DS differences: shape+normalization

Data compared to state-of-the-art generators

Conclusions

We present the first measurement of the WWbb final state in a region of maximal tt-Wt interference

Measurement is sensitive to the large differences between state-of-the-art generators

We expect to reduce the systematic uncertainty associated with ATLAS's treatment of the tt-Wt interference

Backup

Black solid, red dashed, blue dotted, and green dot-dashed lines correspond to $p_{\rm T}^{(veto)}=10,\,30,\,50,\,{\rm and}\,70$ GeV respectively. The magenta solid line with open boxes is obtained without imposing any veto.